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Abstract

The objective of this paper is to construct and investigate smooth orientable surf&&fézsr%my
analytical methods. The structural equations of surfaces in connectio©with sigma models on
Minkowski space are studied in detail. This is carried out using moving frames adapted to surfaces
immersed in theu(N) algebra. The first and second fundamental forms of these surfaces as well as the
relations between them as expressed in the Gauss—Weingarten and Gauss—Codazzi—Ricci equations
are found. The Gaussian curvature, the mean curvature vector and the Willmore functional expressed
in terms of a solution of PY~ sigma model are obtained. An example of a surface associated with
the C P! model is included as an illustration of the theoretical results.
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1. Introduction

Over the last few decades surfaces immersed in multi-dimensional spaces have been
extensively researched in connection with harmonic maps and integrable systems (for a
review, see e.d1] and the references therein). To give the proper credit, we shall mention
that some of the results were in fact rediscovered—they can be found in the 19th century
works by Enneper and his collaborat¢?s3] and Dobrinef4] who were the first to find
some solutions of structural equations describing minimal surfaces. Similarly, the Willmore
functional, a key notion in modern global analysis of surfaces, was in fact already used in
1923 by Thomsen and Shad@}, who also pioneered the use of harmonic maps (so named
only in the 1950s) as a tool for construction of conformally parameterized surfaes in
Accounts of the complicated history of these discoveries and rediscoveries can be found,
e.g. in[6,7].

The motivation for the contemporary research in this area came largely from applica-
tions in various branches of physical, biological and chemical sciences as well as from
engineering. The progress in the analytical treatment of surfaces obtained from nonlinear
differential equations has been rapid and resulted in many new technigues and theoretical
approaches. Some of the most interesting developments have been in the study of sur-
faces immersed in Lie algebras, using techniques of completely integrable systems, e.g.
Backlund and Darboux transformations, theory of solitfin6,8—13] These surfaces are
characterized by fundamental forms whose coefficients satisfy the Gauss—Weingarten and
the Gauss—Codazzi—Ricci equations.

In this work we apply a group-theoretical approach to surfaces associate@ ®ith*
sigma models. This line of investigation was initiated14,15] where it was shown that
two-dimensional constant mean curvature surfaces in three- and eight-dimensional spaces
are associated with tf@P1 andC P2 sigma models defined on Euclidean spaces. Further, it
was demonstrated [6] that any surface described 82" 1 models on Euclidean space
can be constructed by a choice of a moving frame basea @) algebra representation
parameterized by a corresponding solution of the model. This has been a significant result
since surfaces immersed in Lie algebras are known to show up in many physical systems
(see, e.g[17,18). Our objective in this paper is to extend this approach to the case of
CPN-1 sigma models defined on Minkowski space. To this end we have devised a new
technique for construction of a moving frame; the properties of surfaces obtained in this
way, e.g. curvatures, turned out to be significantly different from the ones in the case of
sigma models on Euclidean space.

The use of sigma models in mathematical physics has encompassed predominantly mod-
els defined on Euclidean spaces, since a great number of physical systems can be reduced
to these models. However, in recent literature we find an increasing number of examples
when reductions lead to sigma models on Minkowski space and the need for description of
surfaces related to these models are certainly there. One such example is the string theory
in which sigma models on space-time and their supersymmetric extensions play a crucial
role (e.g[19,20). Classical configuration of strings can be described by common solutions
of the Nambu—Goto—Polyakov action and a system of Dirac type equations intimately con-
nected toC PV ~1 models[21,22] Other relevant applications of recent interest are in the
areas of statistical physics (e.g. reduction of self-dual Yang—Mills equations to the Ernst
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model[23,24)), phase transitions (e.g. dynamics of vortex sheets, growth of crystals, surface
waves, etc.[17,18]) and the theory of fluid membrang&b-27] In this last example it is
known that the free energy per molecule is determined by two invariants (the mean and

Gaussian curvatures) of a surface associated with particular class of solutiGs'of
sigma model defined on Minkowski space.

2. CPV-! sigma models and their Euler-Lagrange equations
As a starting point let us present some basic formulae and notatidhA8r* sigma
models defined on Minkowski space.

The points of the complex coordinate sp&éewill be denoted by = (z1, ..., zy) and
the Hermitian inner product iV by

N
(zow) =z'w=">Y" Zjw; (2.1)
j=1

The complex projective spad@PV 1 is defined as a set of one-dimensional subspaces in
CN. The manifold structure on it is defined by an open covering

Uc={lzllze CY, 2 #0}, k=1,...,N,
where ] = spariz}, and coordinate maps

_ 21 k-1 Zh+1 N
gpk:Uk—>(CN 1 or(z) = —,...,—,—Jr,...,— .
Zk Tk Tk Tk

Let &1, £2 be the standard Minkowski coordinatesRA, with the metric
ds? = (d&%)* — (d£?)2.

In what follows we suppose thag = &1 + £2, &g = £1 — &2 are the light-cone coordinates
inR2, i.e.

ds® = dg; dé. (2.2)
We shall denote by; anddg the derivatives with respect g, andég, respectively, i.e.

1 1
aL = 5(351 + 8%—2), 8R == E(agl - 852)

Let us assume tha® is an open, connected and simply connected subs&Ziwith
Minkowski metric(2.2). In the study ofCPY~1 sigma models we are interested in maps
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[z]: @ — CPN~1which are stationary points of the action functional (see,[28&])
1
=3 / (Du2)(D"z)derde?, Tz =1. (2.3)
Q

The covariant derivative®,, actonz : @ — C" according to the formula
Duz=0,z— (2" - 8u2)2, Oy =0, p=1,2 (2.4)

and ensure that the action depends onlygn [2 — CPY~1 and not on the choice of a
representative of the clasg.[Thus, the map{] is determined as a solution of the Euler—
Lagrange equations defined by the actf@ar8). Writing

zzi, [ fl=1/f1f (2.5)
| f1
one can present the action functiof2l3) also in the form
1
S= / i flz(aLfT PoRf + dr f1 PO, f) dELdég, (2.6)
Q 4l
where theNV x N matrix
1
le—ﬁ?f®ﬂ (2.7)

is an orthogonal projector 0BV, i.e. P2 = P, Pt = P.
It is useful to recall that the actigi2.6) has the local (gaugd) (1) x R symmetry

f— UCLERTBELER) £ (g £R), BEL, ER) @ > R (2.8)

corresponding to the fact that the model is defined@’ 2. In addition, the actioii2.6)
has theUU(N) global symmetry

f— ®f & eU(N). (2.9)
It is also invariant under the conformal transformations
&L — a(ér), &r — B(Er). (2.10)

wherea, 8 : R — Rare arbitrary 1-to-1 maps such tat(&.) # 0, 0rB(Er) # 0, as well
as under the parity transformation

&L — &r, Er— &L (2.11)

Let us note that the invariance propert{2s8)—(2.11)are naturally reproduced on the level
of Euler—-Lagrange equations.

Computing the extremals of the acti¢®6), one finds the Euler-Lagrange equations in
terms off

P {aLaRf - lef«fTaRf)aLf + (fTaLf)aRf)} —o. (2.12)

They can be also expressed in the matrix form
[0L0grP, Pl1=0 (2.13)
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or in the form of a conservation law
8L[8RP’ P] + 8R[8L P, P] =0. (2.14)

By explicit calculation one can check that the real-valued functions

1 1
J = WaLfTPaLﬁ Jr = WaRfUDaRf (2.15)
satisfy
3. Jr = drJL =0 (2.16)

for any solutionf of the Euler—Lagrange equatio(.12) The functions/;, and Jr are
invariant under local/(1) x R and globalU(N) transformation$2.8) and (2.9)

3. Surfaces obtained from C PV ~! sigma model

Let us now discuss the analytical description of a two-dimensional smooth orientable
surfaceF immersed in theu(N) algebra, associated wihPV~1 sigma mode(2.12) We
shall construct an exagt(N)-valued 1-form whose “potential” O-form defines the surface
F. Next, we shall investigate the geometric characteristics of the sufface

Let us introduce a scalar product

1
(A, B)= —ZtrAB
2
onsu(N) and identify the y2 — 1)-dimensional Euclidean space with théN) algebra

RV?-1 ~ su(N).

We denote
MLZ[aLP, P]v MRZ[Bva P]a (31)

or, equivalently, using2.7)
Mp = lef(PSDf ® fl—f®dpfP)esu(N), D=L,R (3.2)

It follows from (2.14)that if fis a solution of the Euler—Lagrange equati¢2d2)then
oLMg+ 0pM; = 0. (3.3)

Therefore, we can identify tangent vectors to the surfaeéth the matrices\f; and My,
as follows:

X =Mp, Xp=-—Mg. (3.4)
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Eq. (3.3)implies there exists a closed(N)-valued 1-form ort2
X = XLdEL + XRd%'R’ dx=0.

BecauseX is closed and2 is connected and simply connectédjs also exact. In other
words, there exists a well-defined(N)-valued functionX on  such thatt = dX. The
matrix functionX is unique up to addition of any constant elementdfV) and we identify
the elements of with the coordinates of the sought-after surféaa RV, Consequently,
we get

X =X, 9rX = Xg. (3.5)

The mapX is called the Weierstrass formula for immersion (an analog of formula firstly
introduced in the case of minimal surface$28,2]). In practice, the surfac& is found by
integration

F:X(EL, Er) = / X (3.6)
y(EL.&R)
along any curve/(£r, &) in Q connecting the poinkg , £g) € © with an arbitrary chosen
point €2, £9) € Q.
By computation of traces otz - Xp, B, D = L, R, we immediately find the compo-
nents of the induced metric on the surfaEe

 (OrfTPILf
G (GLL, GLR> _ L — (%) (3.7)
N N «(rfTPoLf ‘ '
GLRr, GRR D (%) Tr
The first fundamental form of the surfagéis
arfTPo
I=J.d& — 20 (W) de dég + Jg dEZ. (3.8)

In order to establish conditions on a solutjoof the Euler—Lagrange equatio(12)
under which the surface exists, we employ the Schwarz inequality

l{a, Ab)|? < (a, Aa)(b, Ab) (3.9)

valid for any positive Hermitian operatdr(see, e.g[30]). Also note that equality i3.9)
holds only if there exists € C such that eithefea + b, A(wa + b)) = 00r{a + ab, A(a +
ab)) = 0 holds. We may write

p f P9
Jp= 0L PSR (3.10)

(rhH -

and

(9 f POL f)(OR S, POR ) — (M(3L f PORrS))

2
0 3.11
)2 = (3.11)

detG =
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since

(9. f; POLf)(Or £ PORS) = [(0r f PORS)1? = (W(DL £ PORS)).

Therefore, the first fundamental forhdefined by(3.8)is positive for any solutiory of the
Euler—Lagrange equatioi(d.12)

Analyzing the cases when equalitieg$110) and (3.11hold, we find thaf is positive
definite in the point£?, £9) either if the inequality

(oL f1(E2, Q) Por £ (€2, %) # 0 (3.12)
holds or if the vectors
oL f(£2, %), o F (€2, £2), £(&2,€%) (3.13)

are linearly independent. Therefore, any of the conditi@%2) and (3.13)s a sufficient
condition for the existence of the surfageassociated with the solutighof the Euler—
Lagrange equation®.12)in the vicinity of the point gg, 52). If neither of the conditions
(3.12) and (3.13)s met on an image Ix(®) of a lower-dimensional subsét C 2 then
the surfaceF may or may not exist, depending on circumstances. If both condif®hg)
and (3.13)are violated in the whole neighborhoadc 2 of the point eg, g%) then the
surface doesn't exist in this neighborhowd
Using(3.7) we can write the formula for Gaussian curvatuas

1 0,Grr — (1/2)Grror(In J
K- o | 2LGLr (1/2)Grror(In Jr) ’ (3.14)
\/JLJR — G2 \/JLJR — G2
where

drfTPILf
Gip=-N| ———— .
e ( f )

IntheC P! case a surprising simplification occurs and we find that the Gaussian curvature is
a negative constank, = —4. Consequently, there are no umbilical points on the surface and
any regular solution of the Euler—Lagrange equati¢h$?2) gives rise to a pseudosphere
immersed insu(2) ~ R3. Several examples of such pseudospheres were presgti]jn

one is also reproduced in Sectién

4. The Gauss—Weingarten equations

Now we may formally determine a moving frame on the surfa@nd write the Gauss—
Weingarten equations in ti@PV—1 case. Lef be a solution of the Euler-Lagrange equa-

1 By Gaussian curvature we shall understand the half of scalar curvature, i.e. of the fully contracted Riemann
curvature tensok = (1/2)R = (1/2)R§g is derived from the induced metr&. Such definition of the Gaussian
curvature coincides with its definition in terms of principal curvatureR3n
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tions(2.12)such that det§) is not zero in a neighborhood of a regular po'@'ﬁ,(&%) in Q.
Assume also that the surfa@e(3.6), associated with these equations is described by the
moving frame

T=(0.X,0rX, 13, ..., ny2_1),

where the vector8; X, 9g X, ns, ..., ny2_, satisfy the normalization conditions
(0L X,0.X) = Jg,
(0L X, 0rX) = G LR,
(OrX, 0rX) = Jg, (4.1)
(0L X, nk) = (0r X, n) = 0,
(nj, nK) =8

We now show that the moving frame satisfies the Gauss—Weingarten equations
OLdLX = ALOLX + ARIrX + Qknj,

dLrX = Hjnj,
nj = a]LﬂLX + ,BJL-BRX + sJL.knk, 4.2)
dRILX = Hjnj, '
ORIRX = AFILX + ARORX + QFnj,
Ognj = af oL X + BRORX + shny,
wheres’ +si; =0,5% +58=0,jk=3,..., N> -1,
o AGLr=Qfdr ,  QjGLr—HiJL
J detG B detG ’
of — ORGrr — Hjlg R_ HiGLr — Q8 JL
J detG B detG ’
1 [ 1 20Lf1f
AL = N ——(JraLfT + GLrOrfT)POLOL f — aL fTPIRf)G
L= GG {fo( ROLS"+ GLrORST)POLOL f 7 )2 (3 fTPORF)G LR
211d
_2f LfJLJR ’
fif
1 1 20, f1 f
Ak = NS ———(JLor ST +GLroL f1)PILD a fTPaRf)J
R= GetG { fo(LRf‘l' LrOLfT) LLf+(fo)2(Lf RAJL

T
+2j;f;fJLGLR}, (4.3)
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and AR AR have similar form which can be obtained by exchadige- R. The explicit
form of the coefficientsFIj, QJ-D (whereD = L, R; j=3,..., N> — 1) depends on the
chosen orthonormal badiss, . . ., ny2_41} of the normal space to the surfaget the point
X(&2. £3)-

Indeed, ifo; X andag X are defined by3.4) for an arbitrary solutiorf of the Euler—
Lagrange equation®.12) then by straightforward calculation usi{@12)one finds that

019rX = 9gdLX = [0L P, 9rP] = ﬂlf(PaLf ® dr /1P — Porf ® L f1P)
1
—— (o, fT Porf — drfi PO f 4.4
+ (fo)z( Lf'PORf —ORfTPILS)f ® f (4.4)
By computing
tr(dL0rX - 0pX) = *tr([dL P, 9gP] - [0pP, P]) =0, D=L,R (4.5)

we conclude thad; dg X is perpendicular to the surfadéand consequently it has the form
given in(4.2).

The remaining relations i(4.2) and (4.3¥ollow as differential consequences from the
assumed normalizations of the norm@lsl), e.g.

(nj,nk) =0, j#k
which gives,
0= (dLnj, nk) + (OLni. nj) = s + sg;.
Similarly
(nj,00X)=0, (n;,0rX)=0
by differentiation leads to
(rnj, 0.X) + (nj, 3.0rX) =0, (dgrnj, rX) + (1, IrdrX) = 0
implying
JL(xf + Gueﬁfe + 1:11' =0, GLROlj-e + JR,3§e + Q? =0.

Consequently;zj.e andﬁf can be determined in terms ﬁf] Qf and of the components of
the induced metri&. The remaining coefficients? andﬂ]L. are derived in an analogous
way by exchanging indices <> R in the successive differentiations.

The coefficientsAL, ..., AR are obtained by requiring tha®gdpX — APd, X —
ARdRX) is normal to the surface, i.e.

tr(dzX - (3pdpX — AP3, X — AR9rX)) =0, B,D=L,R. (4.6)
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From(3.2) and (3.5)e find

0L0LX = ——(POLILS ® f1 — F@0L0Lf P)+ ——s (O f1 f)f @ 0 f1P
fif (f1)2
—(ffaLfPof® fh),

ORORX = ——(f ® IO TP — Pogdps ® f1) + o ((f10R S PoRS ® /1
fif (f1)2
—@rfIf)f ® RSP, (4.7)

and after substituting the above expressions(#t®)we solve the resulting linear equations
for AD.

Let us note that the Gauss—Weingarten equaiiér® can be written equivalently in the
N x N matrix form

a7 =U?, ogt=V7, (4.8)
where
A% A% Q% Qkkl
0 0 Hy - Hyz 4
U of B% 0 sk, e sé(NZ—l)
ay B% —s5 0 Sive_ny |
L L L L
Uve_1y Bive—1y —Save-1) - TSve—zyve-1y O
0 0 Hy - Hyz2 4
AIZ Ag Q§ lef]z_l
of B 0§ e Save_1)
V= R R R 0 R (4.9)
oy B —534 "' Savz-1)
R R R R
Ave_1y Bive—1y —Save-1) T TSve-zyve-1y O

The Gauss—Codazzi—Ricci equations
OrU — 9L,V +([U, V] =0 (4.10)

are compatibility conditions for the Gauss—Weingarten equai®$ They are the neces-
sary and sufficient conditions for the local existence of the corresponding suffétoean
be easily checked that they are identically satisfied for any solfitibthe Euler—Lagrange
equationg2.12)
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The second fundamental form of the surfaat the regular poinp takes in general
the shape of a map

II(p) : TpF x T,F — N,F,
whereT,F and N, F denote the tangent and normal space to the sutfaaethe pointp,

respectively. According t§32,33] the second fundamental form and the mean curvature
vector can be expressed as

I = (3,9, X)dg, dep + 29,0 X) - dEL dER 4 (0rORX) - dERdER, (4.11)
1
= @(JR@L@LXH — 2G Lr(ILORX)" + JL(9RIR X)), (4.12)

where )+ denotes the normal part of the vector. In our case, given the decomposition of
dpdpX into the tangent and normal parts in the Gauss—Weingarten equédi@)sthe
expression$4.11) and (4.12)ake the form

I = (3,0.X — Af0LX — ARdgX) dgLdEL + 2(9.0pX)dE dER

+ (0RO X — AR X — ARBRX) degder, (4.13)
H=—(Jr(3,0.X — ALo, X — ALOrX) — 2G [ r(dL 3R X)

detG

+JL(0r0rX — ARop X — ARBRX)). (4.14)

Consequently, the Willmore functiongd3,5]is
Wr = / |H|?v/detG d& dég. (4.15)

The derivative9pdg X are expressed explicitly in terms fifi Eqs.(4.4) and (4.7)Unfor-
tunately, it is clear that after explicit calculation 80 X)* in the case oV > 2, both the
second fundamental form and the mean curvature vector contain terni®}ike f ® fT,
etc., which are neither cancelled out by other terms nor projected out by the normal projec-
tion. Therefore, the resulting expressions are rather complicated and, for lack of space, we
do not present them here.

In the C P! case the formulag.13) and (4.14%implify to

I = —20r fTPIL f — 3 fT PO £)(1 — 2P) déL dip,

T T
He 2 Orf'POLf + 0L fTPOR f (1—2P),
OrfTPOLf — O f1PORf

where the normal to the surfadéis given by
n =i(l1 —2P) € su(2). (4.16)

2 In the familiarR? case the normal spadg,F is conventionally identified witfR.
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5. The moving frame of a surface in the algebra su(N)

Now we proceed to construct the moving frame of the surfadgemmersed insu(N)
algebra, i.e. matricedy X, 9z X, ng, a = 3, ..., N% — 1 satisfying(4.1).

Let f be a solution of the Euler-Lagrange equatiq@sl?) and let 62,5%) be a
regular point ing, i.e. such that de&(f(£9, £%)) # 0. Let us denotef® = f(£9, £%),
X0 = x(£9, £9). Taking into account that

tr(A) = tr(®PADT), A € su(N), ® € SU(N),

we employ the adjoint representation of the gréiif{N) in order to bringd; X, 0 X, n,
to the simplest form possible. We shall request

of 9= (/ f0 £0,0,...,0). (5.1)

Let us choose an orthonormal basis#{N) in the following form

(Ajk)ab = i(8jabkp + 8jpka), 1< j<k <N,
(Bjt)ab = (8jabkb — 8jpdka), 1< j<k <N,
14

(Cplab =114/ ﬁ <Z Sdabap — P3p+1,a3p+1,b), l1<p<N-1

d=1

(5.2)

The existence ob € SU(N) satisfying(5.1)follows from the fact that th6U(N) group
acts transitively on the s¢t € CV, afa = o}, wherea € R*. It should be noted that such
® is not unique. A concrete form d@f can be constructed as follows: starting from a general
element: = (ax, ..., ay)" of CN one firstly finds atransformatiochj\Fl which transforms
a into the vector

AN aN-DZN-1) _ g2,

(a1, ...,an—2,\/an—1an—1+ anay, O),

It is easy to see that the desired transformation is

1 0 0
0 1 0
T
Py-1= 0 an-1 an
(an—1an-1+ anan)¥?  (an—1an—-1+ anan)Y/?
0 an an-1

(an—1an-1+anan)V/?  (ay-1an-1+ anay)/?
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In the next step one eliminates the last but one elemert’6f1) using the transfor-
mation

1 0 0 0
0 1 0 0
_\12
N
; 0 an—_o (Zj:N—l a/a./)
Oy o= T N ~\1/2 N —N\1/2
(Z j=N-2 ajaj) (Z j=N—2 a,-aj)
_\12
N
(Zj=N72 a./'“/') an—2 0
- N _N\12
N N
(Ej:k ajaj) (Zj:N—Z ajaj)
0 O e 0 1
This gives
N 1/2
aV-2 = @}L\,_za(N_l) = <I>;r\,_2®TN_1a =\|ay,...,anN_3, Z achj ,0,0
j=N-2
By induction and redesignatian= f° one arrives at the explicit form @b
1 0 0
0 1 0
P - -
Oy1= 0 ... _fl(\JJ—l B N :
(fN-1fR-1+ IRIY? (o fyea + IR FY?
0 Iy fra

U SO (Y SY + I2

®=dy 1By 21, O =old).. 0l | esUW), (5.3)
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where
1 O 0 0
0 1 0 0
_\12
_ N
0 P (Zj=k+l f,(')f]o)
N 070 1/2 N 070 1/2
of (e £279) () 1079)
k= —\1/2 ’
N
(Zj:kJrl f,ofjo) 10
0 =Ty 070\ Y? N 070\Y? 0
(ijk fif j) (Z./:k fitj )
o --- 0 0 1
o --- 0 0 1
k<N-2 (5.4)

If any of the denominators vanishes then the corresponding mbtriz defined to be the
unit matrix. It is also clear that the group elem@ntonstructed in this way is a smooth
function of £ fT and consequently &f; , £&z. Thus, we find

@' 0= (y/s0 f0,0,...,0),

9®x0 = ptfy X(EO EO)(D _ 1 0 _a;quOT

TR g0 0 )
1 "

®p0 _ gt 0 £0vep — _ R

where0 denotes the null¥ — 1) x (N — 1) matrix and the vector8} % € CVN-1 are
defined by

@391 = (@Tapf(E). &), D=L,R j=2,...,N.

The construction of the moving frame is now straightforward. Assume that one finds,
using a variant of Gramm-Schmidt orthogonalization procedure, the orthonormal vectors

;\1;,791;, j=3...,N
satisfying

(05X% A1) =0, (95X° B1j)=0
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span@p x°, A1}, B1j)p=r.r j=3...n = SPan@,, B1;)j=2...n- (5.6)
We identify the remaining tilded and untilded matrices

A =Ajp,Bp=By,C,=Cp, 1<j<k<NI1<p<N-L1
From(5.5)directly follows that

(5X°, Ap) = (35X° By) = (05X°,C,) =0, 1<j<k<N,p<N
and as a result of Gramm-Schmidt orthogonalization we get

(05x% Ay) = 05X°, By) =0
andforl< j<k<N,p=1...,.N-1 i=3,...,N

(Ay, Ay) = (Ay, Bi) = (Ay, Cp) = (Bu, Aj) = (By, Bi) = (Bu, C,) = 0.
Therefore, under the above given assumptions and notation, we can state the following

Proposition 1. The moving frame of the surface F at the point X0 = X (ég, Eg)

X = ©3P X0,
drX = ®IP X0,
) -~
% = A1, (5.7)
nf = @B, 1<j<k<N,
n§=aC,of, 1<p<N-1

satisfies the normalization conditions (4.1) and consequently the Gauss—Weingarten equa-
tions (4.2).

Note that the first two lines of(5.7) are equivalent to(5.5). The remaining
lines of (5.7) give a rather explicit description of normals to the surfg€eln the
CP! case a significant simplification occurs, namely there is only one normal vec-
tor nf:id)ogdfl to the surface immersed isu(2) and no orthogonalization is
needed.

In the case ofV > 2 the explicit form of the moving fram.7) might be quite compli-
cated because of the orthogonalization process involved in the construction of

A B .
nij, nyj, j=3,...,N
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(i.e. in the construction oﬁlj, Elj, j=3,..., N). On the other hand, the remaining
normals

nﬁ{,nfk,ng, l<j<k<NI1I<p<N-1,

can be constructed without any difficulty. If we chose other group eleresdtisfying
(5.1), the constructed normals would have been rotated by a local (gauge) transformation
from the subgroup o§U(N) leavingd, X (£, £%), 9r X (£2, £%) invariant.

It is also worth noting that from the Eqg&l.4) and (4.7)mmediately follows that

dLILX, drIrX € ®span(y;, By))j—2.. . NP,

dLdrX € ®span@ ji, Bjk, Cp)i<jck<n,p<n®', (5.8)

(oL X)", (9rdrX)* € Span@fj, nfj)j=3,‘..,N7

(3L9rX)" = 0L9RX € SPaNGYy, nji, n%)1<j<k<n,p<N- (5.9)

Concerning other possible constructions of the normals, one can observe that one may
construct immediately two unit norméls

nP:;\/E(Wl—\/zP>,

i[oL X, 0rX]

NALX0rX] = Th v A v11"
BX 00X = o, X, 0 X]|

In thesu(2) case the normalsy, n[s, x.a,x], 75 coincide up to the choice of orientation, but
in general the relation of p, n[s, x,9,x] tO n;‘.k, nﬁc, ng is rather complicated and difficult
to express in a closed form. In principle one could attempt to construct the moving frame
directly from these normals by taking normal parts of commutators of themawithand
ar X, etc.? without need to construct the group eleméntUnfortunately, such procedure
does not seem to be computationally feasible at the moment, leaving this subject open for
further investigation.

6. Example of surface in the algebra su(2)

As an example of a surface obtained using the described method we present a picture of
a surface inu(2) associated with th€ P1 sigma model on Minkowski space (sEig. 1).

3 Note that the scalar product

(np,npa, x.00x]) 70
so that their orthogonalization would be needed.
4 This can be proved to be possible at least in sh8) case by observing thag X and 9z X generate via
commutators the whole algehya(3).
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Fig. 1. The surface associated with the solu(iér), p = —3/2.

The following solution of the Euler—Lagrange equati¢@sl2)in this case was obtained
by us using the symmetry reduction method

_ (p—1coshg()+(p+1) ...
f= (1, \/ (>~ D ooshbl) — (v D P h(x)))) , (6.1)
where
h(x) = arctan( 2p +_1 tanhg(x)> + (Pt zzﬁl; l)X,
800 = %, x=E& —&, p<-1

The formulae for the first and second fundamental forms, moving frame, etc., of the asso-
ciated surfacer were obtained but are too lengthy to be presented here. The computation
of the surface, i.e. the Weierstrass representgf8o8), was performed numerically. The
Gaussian curvature & = —4, the mean curvature is

et _ pe2e() 11
- 2ex(0(e200 — 1)

Other examples were presented3d].

7. Conclusions

The main purpose of this paper was to provide the structural equations of two-dimensional
orientable smooth surfaces immersedi(N) algebra. The surfaces were obtained from
the C PV~ sigma model defined on two-dimensional Minkowski space.
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The most important advantage of the method presented is that it gives effective tools for
constructing surfaces without reference to additional considerations, proceeding directly
fromthe giverC PY~1 model equationg.12) We demonstrated through the use of Cartan’s
language of moving frames that one can derive @i&"¥~1 model the first and second
fundamental forms of the surface as well as the relations between them as expressed in
the Gauss—Weingarten and Gauss—Codazzi—Ricci equations. We presented an extension of
the classical Enneper—\Weierstrass represent§2i®j2] of surfaces in multi-dimensional
spaces, expressed in terms of any nonsingular (i.e. such th&t-dd) solution of the
CPN~1 sigma model.

In particular, we showed that in th& P case such description of surfaces in the
su(2) algebra leads to constant negative Gaussian curvature surfaces. Such surfaces were
considered in relation to sin-Gordon equatiorj3d] and we shall investigate the relation
between th& P! sigma models and sin-Gordon equation and their corresponding surfaces
in a separate paper. In higher dimensional cases the Gaussian curvature is no longer con-
stant. Therefore, another direction of our future research is the construction of nontrivial
solutions of CPY~1 sigma models and their corresponding surfaces. Investigation of
concrete examples should help to reveal which geometric properties account for the fact
that higher dimensional models admit more diverse surfaces, namely with nonconstant
Gaussian curvature, than tieP! case.

A different direction in the search for characterizing geometric properties is to study
global quantities like the Willmore function&l- (4.15)and ask whether surfaces associated
to C PN—1 sigma model correspond to some special valu# gf We checked explicitly on
one constructed surfacedn(2) whether it satisfies the local condition for the extremum of
Wr

ArH +2H(H?> = K)=0

and it doesn’t. Evaluating the Willmore functional meets with difficulties because surfaces
associated to models on Minkowski space are usually non-compact—as is evidefitRithe
case, due to the constant negative Gaussian curvature. Consequently, all global invariants,
variational principles, etc., depend on boundary conditions imposed on the solution which
further complicates their study. On the other hand, such methods might be more fruitful in
the case of models on Euclidean spfl® 16] where surfaces are compact provided the
solutions can be extended to the compactificafi®f Euclideani?.

Concerning possible applications of our method we assume that it can be particularly
useful in the theory of phase transitions or fluid membr§hed.8,25-27]where numerical
approaches have prevailed so far. Even in cases when the Weierstrass representation of a
surface cannot be integrated explicitly, the surface’s main characteristics can be derived in
analytical form which lends itself to physical interpretations.
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